Regulation of glial cell line-derived neurotrophic factor responsiveness in developing rat sympathetic neurons by retinoic acid and bone morphogenetic protein-2.
نویسندگان
چکیده
There are several lines of evidence suggesting that, in addition to neurotrophins, member(s) of glial cell line-derived neurotrophic factor (GDNF) family play important roles in the development of sympathetic neurons. However, the mechanism regulating the responsiveness of the neurons to GDNF family members is not known. Previously, we reported on the cooperative roles of bone morphogenetic protein-2 (BMP2) and retinoic acid (RA) in the enhancement of neurotrophin-3 (NT3) responsiveness in cultured sympathetic neurons dissociated from perinatal rat superior cervical ganglia (SCG). In the present study, we further examined the effects of BMP2 and RA on the regulation of the responsiveness of SCG neurons to GDNF family members. Consequently, we found that RA alone induced the responsiveness of SCG neurons specifically to GDNF by upregulating the ligand-specifying receptor for GDNF (GFRalpha-1) at both the mRNA and protein levels. The expression levels of mRNAs for other ligand-specifying receptors for GDNF family (GFRalpha-2 and GFRalpha-3) were unaffected by RA. Although the upregulation of signal-transducing receptor Ret by the RA treatment was rather small, this treatment significantly increased the efficacy of tyrosine phosphorylation of Ret by GDNF. Experiments using synthetic retinoids suggested that RA acts through alpha-type of nuclear retinoic acid receptor to exert the induction of GDNF responsiveness. On the other hand, BMP2, which had no significant effect by itself on the GDNF responsiveness, promoted the action of RA to upregulate GFRalpha-1 and enhance the GDNF responsiveness. These results indicate that RA and BMP2 play important roles in the induction of GDNF responsiveness, as well as NT3 responsiveness, of developing SCG neurons.
منابع مشابه
The Effects of Progesterone on Glial Cell Line-derived Neurotrophic Factor Secretion from C6 Glioma Cells
Objective(s)Progesterone is a steroid hormone whose biology has been greatly studied within the confines of reproductive function. In recent years, the neuroprotective effects of progesterone have attracted growing interest. Glial cell line-derived neurotrophic factor (GDNF), is a neurotrophic factor which plays a crucial role in the development and maintenance of distinct sets of central and p...
متن کاملTransfection of the glial cell line-derived neurotrophic factor gene promotes neuronal differentiation
Glial cell line-derived neurotrophic factor recombinant adenovirus vector-transfected bone marrow mesenchymal stem cells were induced to differentiate into neuron-like cells using inductive medium containing retinoic acid and epidermal growth factor. Cell viability, microtubule-associated protein 2-positive cell ratio, and the expression levels of glial cell line-derived neurotrophic factor, ne...
متن کاملAcute and chronic effects of lithium on BDNF and GDNF mRNA and protein levels in rat primary neuronal, astroglial and neuroastroglia cultures
Objective(s):Theneuroprotective effect of lithium has been attributed to its therapeutic action. However, the role of glial cells particularly astrocytes, and the possible interactions between neurons and astrocytes in neuroprotective effects of lithium have been disregarded. Thus, the aim of this study was to evaluate the direct effects of lithium on brain derived neurotrophic factor (BDNF) an...
متن کاملBone Marrow Stromal Cell Transdifferentiation into Oligodendrocyte-Like Cells Using Triiodothyronine as a Inducer with Expression of Platelet-Derived Growth Factor α as a Maturity Marker
Background: The present study investigated the functional maturity of oligodendrocyte derived from rat bone marrow stromal cells (BMSC). Methods: The BMSC were isolated from female Sprague-Dawley rats and evaluated for different markers, such as fibronectin, CD106, CD90, Oct-4 and CD45. Transdifferentiation of OLC from BMSC was obtained by exposing the BMSC to DMSO and 1 µM all-trans-retinoic a...
متن کاملThe Expression implication of GDNF in ventral horn and associated remote cortex in rhesus monkeys with hemisected spinal cord injury
Objective(s): Glial cell line-derived neurotrophic factor (GDNF) can effectively promote axonal regeneration,limit axonal retraction,and produce a statistically significant improvement in motor recovery after spinal cord injury (SCI). However, the role in primate animals with SCI is not fully cognized. Materials and Methods:18 healthy juvenile rhesuses were divided randomly into six groups, obs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 20 8 شماره
صفحات -
تاریخ انتشار 2000